The Particle Model (H)

1. Th	ne atomic model has changed over time.	
Why	did the model need to change over time?	
A B C D	Models only have a finite lifetime Computers were invented The older models could not explain new evidence Peer review	
Your	r answer	[1]
2. W	hat is the typical diameter of an atom?	
A B C D	1.0×10^{-15} m 1.0×10^{-10} m $1.0 \mu m$ 1.0 mm	
Your	r answer	[1]
3. A l	liquid has a volume of 0.01 m³ and a mass of 12 kg.	
What	t is the density of the liquid?	
Use 1	the equation: density = mass / volume	
A B C D	0.12 kg / m ³ 12 kg / m ³ 120 kg / m ³ 1200 kg / m ³	
Your	r answer	[1]

4. A student investigates what happens when she heats a beaker of water.

	The temperature increases	The state changes	The energy stored in the water changes
Α	✓	√	✓
В	✓	X	х
С	Х	✓	х
D	X	X	✓

Which row in the table describes what could happen when the water is heated?

Your answer	[1]
-------------	-----

5. A graduated syringe contains air.

It is put in a freezer to cool it down.

When it is removed from the freezer the piston has moved inwards.

The density of the air in the syringe when cooled is 2.4 kg/m³.

What was the density of the air at room temperature?

- 0.6 kg/m³ 1.2 kg/m³ A.
- B.
- 2.4 kg/m³ C.
- D. 4.8 kg/m³

Your answer	

6. A piece of metal has a volume of 2.0×10^{-5} m ³ .	
The density of it is $8.0 \times 10^3 \text{ kg/m}^3$.	
What is its mass?	
A. 2.5×10^{-3} kg B. 4.0×10^{-2} kg C. 1.6×10^{-1} kg D. 1.6×10^{3} kg	
Your answer [7	1]
7(a). A student uses a ruler to determine the volume of a cube, A . The length of one side of the cube is 0.100 m.	
i. Calculate the volume of cube A .	
Volume of cube A = m ³ [[2]
ii. Cube B has the same volume as cube A .	
The mass of cube B is ten times greater than the mass of cube A .	
Compare the density of cube B with cube A .	
Use the equation for density to help your explanation.	
	 2]
(b). Give one reason why a solid is more dense than a gas.	
[<u>1]</u>

END OF QUESTION PAPER