The Particle Model (H)

1. The atomic model has changed over time.

Why did the model need to change over time?

A Models only have a finite lifetime
B Computers were invented
C The older models could not explain new evidence
D Peer review

Your answer
2. What is the typical diameter of an atom?

A $\quad 1.0 \times 10^{-15} \mathrm{~m}$
B $\quad 1.0 \times 10^{-10} \mathrm{~m}$
C $\quad 1.0 \mu \mathrm{~m}$
D $\quad 1.0 \mathrm{~mm}$

Your answer \square
3. A liquid has a volume of $0.01 \mathrm{~m}^{3}$ and a mass of 12 kg .

What is the density of the liquid?
Use the equation: density = mass / volume

A $\quad 0.12 \mathrm{~kg} / \mathrm{m}^{3}$
B $\quad 12 \mathrm{~kg} / \mathrm{m}^{3}$
C $\quad 120 \mathrm{~kg} / \mathrm{m}^{3}$
D $\quad 1200 \mathrm{~kg} / \mathrm{m}^{3}$
4. A student investigates what happens when she heats a beaker of water.

	The temperature increases	The state changes	The energy stored in the water changes
A	\checkmark	\checkmark	\checkmark
B	\checkmark	x	x
C	x	\checkmark	x
D	x	x	\checkmark

Which row in the table describes what could happen when the water is heated?

Your answer \square
5. A graduated syringe contains air.

It is put in a freezer to cool it down.
When it is removed from the freezer the piston has moved inwards.

The density of the air in the syringe when cooled is $2.4 \mathrm{~kg} / \mathrm{m}^{3}$.
What was the density of the air at room temperature?
A. $\quad 0.6 \mathrm{~kg} / \mathrm{m}^{3}$
B. $\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
C. $\quad 2.4 \mathrm{~kg} / \mathrm{m}^{3}$
D. $\quad 4.8 \mathrm{~kg} / \mathrm{m}^{3}$

Your answer

6. A piece of metal has a volume of $2.0 \times 10^{-5} \mathrm{~m}^{3}$.

The density of it is $8.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
What is its mass?
A. $2.5 \times 10^{-3} \mathrm{~kg}$
B. $4.0 \times 10^{-2} \mathrm{~kg}$
C. $1.6 \times 10^{-1} \mathrm{~kg}$
D. $1.6 \times 10^{3} \mathrm{~kg}$

Your answer

7(a). A student uses a ruler to determine the volume of a cube, \mathbf{A}. The length of one side of the cube is 0.100 m .
i. Calculate the volume of cube \mathbf{A}

Volume of cube $\mathbf{A}=$
ii. Cube B has the same volume as cube \mathbf{A}.

The mass of cube \mathbf{B} is ten times greater than the mass of cube \mathbf{A}.
Compare the density of cube \mathbf{B} with cube \mathbf{A}.
Use the equation for density to help your explanation.
\qquad
\qquad
\qquad
\qquad
(b). Give one reason why a solid is more dense than a gas.
\qquad
\qquad [1]

